Dysregulated Expression and Sub cellular Localization of Base Excision Repair (BER) Pathway Enzymes in Gallbladder Cancer
نویسندگان
چکیده مقاله:
Base excision repair (BER) pathway is one of the repair systems that have an impact on the radiotherapy and chemotherapy for the cancer patients. The molecular pathogenesis of gallbladder cancer is not known extensively. In the present study we investigated whether the expression of AP endonuclease 1 (APE1) and DNA polymerase β (DNA pol β), key enzymes of BER pathway has any clinical significance with gallbladder carcinogenesis. 41 gallbladder cancer, 27 chronic cholecystitis, and 3 normal gallbladder specimens were analyzed for the expression of APE1 and DNA polymerase β by western blotting, and sub cellular localization were studied by immunohistochemistry. The enzymatic activity of APE1 was also studied. The correlations with expression of the above proteins with clinical-pathological characteristics of gallbladder cancer patients were analyzed. The integrated density value ratio (relative expression) of total APE1 (37 kDa + 35 kDa variant) analyzed in the three groups of tissues, were 0.76±0.03 in normal gallbladder, 0.91±0.08 in chronic cholecystitis, and 1.12±0.05 in gallbladder cancer. APE1 was found to be up-regulated in 80% of gallbladder carcinoma samples (P = 0.01). A positive trend of APE1 expression with tumor stage and lymph node positivity was observed. The enzymatic activity of APE1 was found higher in gallbladder cancer samples in comparison with chronic cholecystitis. The integrated density value ratio of DNA polymerase β for normal gallbladder, chronic cholecystitis and gallbladder cancer tissue samples were 0.46±0.03, 0.7±0.06 and 1.33±0.1, respectively. DNA polymerase β was found to be up regulated in almost all gallbladder carcinoma samples (P = 0.0001), and its expression was negatively correlated with age (P = 0.02). DNA polymerase β expression showed a positive trend with tumor stage and nuclear differentiation of gallbladder cancer. . It may be concluded that alteration of these BER pathway proteins may be the causal factors for carcinogenesis of gallbladder, and has targeted therapeutic potential.
منابع مشابه
Base excision DNA repair and cancer
Transformed cells can develop drug resistance via repair mechanisms that counteract the DNA damage from chemotherapy or radiation therapy. Disruption of DNA repair pathways can cause mis-repair that is cytotoxic [1]. Specific DNA repair inhibitors might thus be combined with DNA-damaging agents for improved therapy. In addition, some cancer cells have a reduced repertoire of DNA damage response...
متن کاملBase excision repair targets for cancer therapy.
Cellular DNA repair is a frontline system that is responsible for maintaining genome integrity and thus preventing premature aging and cancer by repairing DNA lesions and strand breaks caused by endogenous and exogenous mutagens. However, it is also the principal cellular system in cancer cells that counteracts the killing effect of the major cancer treatments e.g. chemotherapy and ionizing rad...
متن کاملSIRT1 deacetylates APE1 and regulates cellular base excision repair
Apurinic/apyrimidinic endonuclease-1 (APE1) is an essential enzyme in the base excision repair (BER) pathway. Here, we show that APE1 is a target of the SIRTUIN1 (SIRT1) protein deacetylase. SIRT1 associates with APE1, and this association is increased with genotoxic stress. SIRT1 deacetylates APE1 in vitro and in vivo targeting lysines 6 and 7. Genotoxic insults stimulate lysine acetylation of...
متن کاملGenetic polymorphisms in base-excision repair pathway genes and risk of breast cancer.
Impaired base-excision repair (BER) function can give rise to the accumulation of DNA damage and initiation of cancer. We evaluated whether genetic variation in six BER pathway genes (XRCC1, ADPRT, APEX1, OGG1, LIG3, and MUTYH) is associated with breast cancer risk in two large population-based case-control studies in the United States (3,368 cases and 2,880 controls) and Poland (1,995 cases an...
متن کاملTranscriptional regulation of the base excision repair pathway by BRCA1.
Inactivation of the breast cancer susceptibility gene BRCA1 plays a significant role in the development of a subset of breast cancers, although the major tumor suppressor function of this gene remains unclear. Previously, we showed that BRCA1 induces antioxidant-response gene expression and protects cells against oxidative stress. We now report that BRCA1 stimulates the base excision repair pat...
متن کاملGenetic Variation in Base Excision Repair Pathway Genes, Pesticide Exposure, and Prostate Cancer Risk
BACKGROUND Previous research indicates increased prostate cancer risk for pesticide applicators and pesticide manufacturing workers. Although underlying mechanisms are unknown, evidence suggests a role of oxidative DNA damage. OBJECTIVES Because base excision repair (BER) is the predominant pathway involved in repairing oxidative damage, we evaluated interactions between 39 pesticides and 394...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 7 شماره None
صفحات 119- 132
تاریخ انتشار 2018-05
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023